Books and papers relating nonstandard analysis to philosophy

Back to NSA page

Barth E (1991) Waiting for Godot. Epistemlogia 14 #1 pp 77-104 (part in Italian)

Cutland N, Kessler C, Kopp E and Ross D. (1988) On Cauchy Notion of Infinitesimal. British J. for the Philosophy of Science Vol 39 #3 pp 375-378

Dauben J (1988) Abraham Robinson and NSA - History, Philosophy and Foundations of Math. Miinesota Studies in Philosophy of Science. 11 pp 177-200

Drossos C (2005) Sets, Categories and Structuralism http://www.math.upatras.gr/~cdrossos/Docs/Dros4WICT.pdf

Drossos C (2005) Structures, Points and Levels of Reality http://www.math.upatras.gr/~cdrossos/Docs/Dros4ASML.pdf

Fenstad J (1985) Is NSA relevant for the philosophy of mathematics? Synthese 62 pp 289-302

Gomez Pin, V (1986-7) Ontologia e historia del calculus. Theoria (Spain) 2 pp 97-119.

Keisler H.J. (1994) The hyperreal line; in Real numbers, generalizations of the reals, and theories of continua (ed. Ehrlich P) Kluwer Academic Publishers, Netherlands

Latakos I (1978) The significance of NSA for the history and philosophy of mathematics. In Imre Latakos Philosophical Papers Vol 2. C.U.P.

Machover M (1993) The place of NSA in Math. and in Math. teaching. British J. for the Phil. of Sci. Vol 44 #2 pp 205-212

McLaughlin W and Miller S (1992) An epistemological use of NSA to answer Zeno objections against motion. Synthese Vol. 92 #3 pp 371-384

Moreno A (1979) The calculus and infinitesimals: a philosophical reflection. Nature and System 1 pp 189-201

Wattenberg F (1988) NSA and Constructivism? Studia Logica 47 #3 pp 303-309

White M (1982) Zeno's Arrow, divisible infinitesimals and Chrysippus. Phronesis 27 pp 239-254

Make your own free website on Tripod.com